Function Point analysis
ISO/IEC 20968
Ronan Fitzpatrick

Albrect - (1979)
Function Point analysis

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DI</th>
<th>Characteristic</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data communications</td>
<td></td>
<td>System maintenance</td>
<td></td>
</tr>
<tr>
<td>Distributed data processing</td>
<td></td>
<td>Systems processing</td>
<td></td>
</tr>
<tr>
<td>Distributed data management</td>
<td></td>
<td>Operation interface</td>
<td></td>
</tr>
<tr>
<td>Transactions</td>
<td></td>
<td>Software test</td>
<td></td>
</tr>
<tr>
<td>End user efficiency</td>
<td></td>
<td>Facilitate change</td>
<td></td>
</tr>
</tbody>
</table>

Total degree of influence = \(\sum (D_{I1} to D_{I14}) \)

DI Values
- Not present or No influence = 0
- Insignificant influence = 1
- Moderate influence = 2
- Average influence = 3
- Significant influence = 4
- Strong influence throughout = 5

Assuming DI = 3 for all 14 characteristics

\(\frac{\sum (D_{I1} to D_{I14})}{3} = 14 x 3 = 42 \)

Having calculated the Function points
- Use number of lines of code (LOC) per function point in order to calculate total lines of Code in a project.
- LOC varies per programming language.